
 
In many cases, data is best analysed using a general or 
generalized linear model, including any of  
	
  

1. Multiple linear regression 
2. Logistic regression 
3. Poisson regression  
4. Negative binomial regression  
5. Multinomial regression  
6. Ordinal regression  
7. Exponential regression  
8. Weibull regression  
9. Cox proportional hazards models 
10. Accelerated failure time models. 

 
For each of these types of model, it is still necessary to consider 
exactly what terms will appear on the right hand side of the model 
equation.  In particular, it is necessary to consider what predictor 
variables (main effects) to include, and how, and what interaction 
terms to include. A useful approach to making these choices is due 
to Frank Harrell, in his book Regression Modelling Strategies.  We 
summarise one of the main ideas of the book here.  
 
This main idea is that the size of your dataset and the types of 
responses you observe determine how many parameters you 
can put into your model and still obtain reasonably stable 
estimates of them through the modelling process.  If you have a 
huge dataset, with >10000 cases, e.g., you might as well include 
any term in your model that you think might be interesting.  
However, if you have only a moderate sized dataset, you will need 
to make some decisions about how many terms you can include, 
and this should be done BEFORE the modelling is carried out. 
 
How many parameters can you afford? 
 
If you are doing any of the following regression types, you can 
afford n/15 parameters, where n is your sample size: 

• Multiple linear regression 
• Poisson regression  
• Negative binomial regression  



If you are doing logistic or multinomial regression, you can afford 
m/15 parameters where m is the number of responses in the 
smallest category. 
 
If you are doing any time to event analysis method, including those 
listed below, you can afford m/15 degrees of freedom, where m is 
the number of observed events. 

• Exponential regression models 
• Weibull regression models 
• Cox proportional hazards models 
• Accelerated failure time models. 

 
If you are doing ordinal logistic regression, you can afford m/15 
parameters, where m is calculated by the following formula: 
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where n is the sample size, k is the number of levels in the ordinal 
response variable, and ni is the number of datapoints at the ith 
level of the ordinal response variable. 
 
 
How many parameters do various terms in the model “cost”? 
 
For any general or generalised linear model EXCEPT multinomial 
or ordinal regression, the numbers of parameters needed for 
various terms on the right hand side are given below: 
 
Main effects: 
 
Type of predictor Number of parameters 
Quantitative or ordinal treated as 
quantitative 

1 

Nominal treated as fixed effect or ordinal 
treated as fixed effect nominal with k 
levels 

 
k - 1 

Nominal treated as random effect or 
ordinal treated as random effect nominal 

1 

 
 
 



 
 
 
Interaction effects: 
 
 
First predictor 

 
Second predictor 

Number of 
parameters in 
interaction term 

Quantitative Quantitative 1 
Quantitative Fixed effect nominal 

with k levels 
k-1 

Quantitative  Random effect 
nominal 

1 

Fixed effect nominal 
with k levels 

Fixed effect nominal 
with j levels 

(k-1)(j-1) 

Fixed effect nominal 
with k levels 

Random effect 
nominal 

k-1 

Random effect 
nominal 

Random effect 
nominal 

1 

 
For multinomial or ordinal regression models, the number of 
necessary parameters must be multiplied by the number of levels 
of the response variable minus 1. 
 
Consequences of this for modelling 
 
We can see from the above chart that nominal variables, whether 
response variables or fixed effect nominal predictors, are very 
costly in terms of available parameters.  This means that if you 
have some categories in your nominal variables with very few 
datapoints, you may want to consider if it would be better to 
combine some of these categories to use fewer parameters or to 
treat a nominal predictor variable as a random effect.  Of course, if 
the distinctions between categories are critical to the research 
question, this should not be done.  But this may mean that either it 
is necessary to collect more data, or that other variables will need 
to be excluded from the analysis. 
 
Another consequence is that it not advisable to turn quantitative 
variables into categorical variables by grouping, as this greatly 
increases the necessary number of parameters in the model.  For 
instance, it would be better to keep BMI as a quantitative 



measurement than group measurements into “underweight” 
“healthy weight” and “overweight” categories. 


